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ABSTRACT
Moore’s Law states that the number of transistors on a de-
vice doubles every two years; however, it is often (mis)quoted
based on its impact on CPU performance. This important
corollary of Moore’s Law states that improved clock fre-
quency plus improved architecture yields a doubling of CPU
performance every 18 months. This paper examines the im-
pact of Moore’s Law on the peak floating-point performance
of FPGAs. Performance trends for individual operations are
analyzed as well as the performance trend of a common in-
struction mix (multiply accumulate). The important result
is that peak FPGA floating-point performance is growing
significantly faster than peak floating-point performance for
a CPU.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance Attributes;
C.1.3 [Other Architecture Styles]: Adaptable Architec-
tures

General Terms
Performance

Keywords
FPGA, floating point, supercomputing, trends

1. INTRODUCTION
The consistency of Moore’s law has had a dramatic im-

pact on the semiconductor industry. Advances are expected
to continue at the current pace for at least another decade
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yielding feature sizes of 45 nm by 2009[1]. Every two years
the feature size for CMOS technology drops by over 40%.
This translates into a doubling of transistors per unit area
and a doubling of clock frequency every two years. The mi-
croprocessor industry has translated this into a doubling of
CPU performance every 18 months. Over the last six years,
clock rate has yielded a 12× improvement in CPU perfor-
mance while architectural changes have only yielded a 1× to
4× improvement (depending on the operation considered).
The additional transistors are typically used to compensate
for the “memory wall”[2]. Design constraints and legacy
instruction sets prevent CPU architects from moving the
necessary state closer to the computation; thus, additional
functional units would go underutilized.

Unlike CPUs, FPGAs have a high degree of hardware
configurability. Thus, while CPU designers must select a re-
source allocation and a memory hierarchy that performs well
across a range of applications, FPGA designers can leave
many of those choices to the application designer. Simul-
taneously, the dataflow nature of computation implemented
in field programmable gate arrays (FPGAs) overcomes some
of the issues with the memory wall. There is no instruc-
tion fetch and much more local state can be maintained (i.e.
there is a larger “register set”). Thus, data retrieved from
memory is much more likely to stay in the FPGA until the
application is “done” with it. As such, applications imple-
mented in FPGAs are free to utilize the improvements in
area that accompany Moore’s law.

Beginning with the Xilinx XC4085XL, it became possible
to implement IEEE compliant, double-precision, floating-
point addition and multiplication; however, in that era, FP-
GAs were much slower than commodity CPUs. Since then,
FPGA floating-point performance has been increasing dra-
matically. Indeed, the floating-point performance of FP-
GAs has been increasing more rapidly than that of com-
modity CPUs. Using the Moore’s law factors of 2× the area
and 2× the clock rate every two years, one would expect a
4× increase in FPGA floating-point performance every two
years. This is significantly faster than the 4× increase in
CPU performance every three years. But area and clock rate
are not the entire story. Architectural changes to FPGAs
have the potential to accelerate (or decelerate) the improve-
ment in FPGA floating-point performance. For example,
the introduction of 18 × 18 multipliers into the Virtex-II
architecture dramatically reduce the area needed to build a
floating-point multiplier. Conversely, the introduction of ex-
tremely high speed I/O and embedded processors consumed



area that could have been used to implement additional pro-
grammable logic1.

These trends, coupled with the potential of FPGAs to
sustain a higher percentage of peak performance, prompted
this analysis of floating-point performance trends. Modern
science and engineering is becoming increasingly dependent
on supercomputer simulation to reduce experimentation re-
quirements and to offer insight into microscopic phenom-
ena. Such scientific applications at Sandia National Labs
depend on IEEE standard, double precision operations. In
fact, many of these applications depend on full IEEE compli-
ance (including denormals) to maintain numerical stability.
Thus, this paper presents the design of IEEE compliant sin-
gle and double precision floating-point addition, multiplica-
tion, and division. The performance and area requirements
of these operators, along with the multiply accumulate com-
posite operator, is given for five FPGAs over the course of
6 years. From this data, long term trend lines are plotted
and compared against known CPU data for the same time
period. Each line is extrapolated to determine a long term
“winner”.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work on floating-point in FPGAs.
The implementation of the floating-point operations is then
presented in Section 3. Section 4 presents the comparison
of FPGA and CPU performance trends. Finally, Section 5
presents conclusions and Section 6 presents future work.

2. BACKGROUND
This work is motivated by an extensive body of previous

work in floating-point for FPGAs. A long series of work[3, 4,
5, 6, 7] has investigated the use of custom floating-point for-
mats in FPGAs. There has also been some work in the trans-
lation of floating-point to fixed point[8] and the automatic
optimization of the bit widths of floating-point formats[9].
In most cases, these formats are shown to be adequate for
some applications, to require significantly less area to imple-
ment than IEEE formats[10], and to run significantly faster
than IEEE formats. Most of these efforts demonstrate that
such customized formats enable significant speedups for cer-
tain chosen applications. Unfortunately, many scientific ap-
plications depend on both the dynamic range and high pre-
cision of IEEE double-precision floating-point to maintain
numerical stability. Thus, this work focuses on the IEEE
standard. Indeed, some application developers within the
DOE labs are beginning to discuss the need for greater pre-
cision than the standard IEEE formats, and such formats
may be the topic of future work.

The earliest work on IEEE floating-point[11] focused on
single precision and found that, although feasible, it was ex-
tremely slow. Later work[12] found that the performance
was improving, but still relatively poor. Eventually, it was
demonstrated[13] that while FPGAs were uncompetitive with
CPUs in terms of peak FLOPs, they could provide com-
petitive sustained floating-point performance. Since then,
a variety of work[14, 4, 7, 15] has demonstrated the grow-
ing feasibility of IEEE compliant, single precision floating-
point arithmetic and other floating-point formats of approx-
imately that complexity. Indeed, some work[16] suggests
that a collection of FPGAs can provide dramatically higher

1This is not to say that these innovations are not good or
not important to the future of FPGAs in computing.
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Figure 1: IEEE floating-point formats: (a) single
precision and (b) double precision

performance than a commodity processor.
A number of these works have focused on optimizing the

format and the operators to maximize FPGA performance.
In [14] a delayed addition technique is used to achieve im-
pressive clock rates. In other work, [4, 7], the details of the
floating-point format are varied to optimize performance.
The specific issues of implementing floating-point division
in FPGAs has been studied[15]. Similarly, [17] studied how
to leverage new FPGA features to improve general floating-
point performance, but neither covered double precision arith-
metic. Indeed, little work has considered the performance
of IEEE double precision floating-point and no work to date
has considered the trends in FPGA performance.

3. IMPLEMENTATION
Three IEEE 754 compliant arithmetic operations (addi-

tion, multiplication, and division) were implemented for both
single precision and double precision formats. Figure 1 illus-
trates the IEEE format. The exponents are maintained in
biased notation (bias-127 or bias-1023 as noted). Exponents
of zero and the maximum value of the field (255 and 2047,
respectively) are reserved for special values. The mantissa is
maintained with an implied one. That is, in all but special
cases, the mantissa is formed by adding a “1” before the
value stored. The decimal place is always immediately to
the left of the stored value. This requires numerous normal-
ization elements in compliant implementations.

The IEEE 754 standard has a number of interesting fea-
tures that must be taken into account for a compliant imple-
mentation. First, there are exception conditions that require
the generation of NaN, infinity, and zero. Second, these
special values must be handled as inputs to the operations.
Third, gradual underflow (or denormal processing) must be
provided. Finally, IEEE specifies four rounding modes.

These floating-point units provide correct output in all
exception conditions, but do not provide special exception
signals. It is unclear how such signals would be used in
an FPGA design, but addition of these signals would be
trivial if needed. They also provide proper handling of all
special values and provide full denormal processing. Round-
to-nearest-even is the IEEE rounding mode provided in the
initial implementation, but other rounding modes could be
added as options.

Each of these experiments used Synplify 7.3 from Syn-
plicity running on a Redhat 9 platform for synthesis. IOB
flip-flops were prohibited and aggressive clock rate targets
(relative to realized clock rates) were used. Each design was
synthesized for 5 parts from Xilinx families spanning the last
6 years (the choice of parts will be discussed in Section 4).
Xilinx 4.2i tools on a Solaris platform were used to place and



Table 1: IEEE double precision floating-point adder
characteristics.

Part 4-LUTs FFs Slices MHz

XC4085XLA-09 1334 1226 960 33
Virtex 1000-5 1433 1408 1096 78

Virtex-E 3200-7 1458 1349 1075 94
Virtex-II 6000-5 1407 1408 1090 125
Virtex-IIP 100-6 1406 1408 1090 143

Table 2: IEEE single precision floating-point adder
characteristics.

Part 4-LUTs FFs Slices MHz

XC4085XLA-09 587 600 441 38
Virtex 1000-5 622 651 487 85

Virtex-E 3200-7 622 693 501 110
Virtex-II 6000-5 611 696 496 165
Virtex-IIP 100-6 611 696 495 195

route the XC4000XLA series part and Xilinx 5.2i tools on a
Solaris platform were used for all other parts. Timing con-
straints were adjusted to optimize final timing results with
an “extra effort level” of 2. No floorplanning or placement
constraints were used at this time.

3.1 Addition Implementation
IEEE floating-point addition consists of three major func-

tions: pre-normalization, operation (including rounding),
and post-normalization. Pre-normalization and post-normal-
ization are shift operations requiring shifts (in increments of
one) from 0 to N , where N is the width of the mantissa
including the implied 1. The nature of these shifts provides
proper handling of denormal cases with very little modifica-
tion. The operation at the core of floating-point addition is
either an addition or subtraction (depending on the signs of
the inputs) that is N + 4 bits wide. The increase in width
is necessary to handle the possibility of carry out and to
handle all rounding cases.

The floating-point addition units accept one parameter
— a maximum latency. This parameter controls the num-
ber of pipeline registers that are inserted. This is handled
by inserting a total of 14 register components (for double
precision, 13 for single precision) that accept a boolean to
indicate if a register should be inserted. If more than half of
the registers are requested, additional registers are added at
the start of the pipeline (where the stages are slightly more
complicated). Register insertion points were chosen with a
number of metrics. Heavy emphasis was placed on regu-
larity of the pipeline with registers preferentially placed in
places that would yield an approximately constant width.
Pre-normalization and post-normalization shifts were bro-
ken into smaller shifts to reduce routing and logic complex-
ity with an optional register at each shift stage.

Tables 1 and 2 give the area requirements and perfor-
mance of the double and single precision floating-point adders
when pipelined to their maximum depth. This table does
not show 3-LUT usage for the XC4000 series because 3-

Table 3: IEEE double precision floating-point mul-
tiplier characteristics.

Part 4-LUTs FFs Slices MHz

XC4085XLA-09 4381 4940 2954 25
Virtex 1000-5 4535 5047 3810 50

Virtex-E 3200-7 4535 5171 3844 68
Virtex-II 6000-5 2016 2354 1607 105
Virtex-IIP 100-6 2016 2354 1608 142

LUTs seldom dominate area usage. There is a slight vari-
ation in the area usage across device families. These rela-
tively minor variations are an artifact of the optimizations
performed by the tool chains (including such optimizations
as logic replication to reduce fan-out). One clear trend is
that the mapper uses far more slices than would appear to
be necessary. Some experimentation was done to determine
if a “more full” device would prompt the mapper to pack
the logic more densely, but there was no significant impact
observed. Careful hand optimization would likely cut the
number of slices used by almost 30%.

Another striking trend observed in Tables 1 and 2 is the
relatively small performance gain when moving from dou-
ble to single precision. This is because the longest pipeline
stage is an early pipeline stage which is handling exponent
calculations and manipulating the mantissa. These stages
change little between the single and double precision oper-
ations — the exponent only changes in length by three bits
and mux width has relatively little impact on performance.

3.2 Multiplication Implementation
The fundamental multiplication operation is conceptually

simple: multiply the mantissas, round, and add the expo-
nents. The multiply (of the mantissas) is not required to
maintain the full precision of an N × N multiply. All of
the partial products must be generated, but the summa-
tion can accumulate most of the lower bits into a single
“sticky bit”. The result only needs to be maintained to
two bits wider than the mantissa (plus the sticky bit) to
preserve enough information for proper rounding. Unfortu-
nately, compliance with the IEEE standard complicates this
significantly. First, the inputs could be denormal. If so,
maintaining proper precision (without a full N × N multi-
plier) requires the smaller number to be normalized. If the
larger input is denormal, the result will underflow. Second,
one input could be the special value, NaN. If so, the exact
value of the NaN input must be preserved and propagated.
Finally, two non-denormal inputs could produce a denormal
result. This requires that the final output be normalized, or
rather denormalized, appropriately.

In this implementation, the multiply of the mantissas was
separated into a separate component. This hides the multi-
ply implementation from the rest of the design (save for the
pipeline depth of the multiply which must be specified in
the upper level design). This was important because there
is a wide variety of multiply implementations offering opti-
mizations for such things as datapath regularity, latency, or
use of the embedded multipliers. Two multiplier implemen-
tations were developed in this design — one that uses the
embedded multipliers (and requires nine of them for dou-



Table 4: IEEE single precision floating-point multi-
plier characteristics.

Part 4-LUTs FFs Slices MHz

XC4085XLA-09 1661 1579 1103 38
Virtex 1000-5 1268 1487 1080 89

Virtex-E 3200-7 1279 1487 1087 113
Virtex-II 6000-5 772 821 598 124
Virtex-IIP 100-6 762 821 592 176

ble precision) in Virtex-II and Virtex-IIPro and a second
(pipelined bit serial) that is very regular in structure for use
in XC4000 and Virtex series parts.

The floating-point multiplier design has three parameters.
The maximum latency specifies the pipeline stages which are
allocated as they are in the adder. The worst case latency
is 20 cycles for the double precision multiplier (or 39 with
no embedded multipliers) and 16 cycles for the single preci-
sion multiplier (or 24 with no embedded multipliers). The
second parameter provides the option to support denormals.
Eliminating denormals implies that denormal numbers are
treated as zeroes for both inputs and outputs and saves sig-
nificant area. The final parameter provides optional use of
the embedded multipliers. This parameter must be false for
XC4000, Virtex, and VirtexE designs and may be false for
newer parts if desired.

Tables 3 and 4 highlight the performance characteristics
of the double precision and single precision multipliers, re-
spectively. Area requirements drop substantially when the
embedded multipliers are used. Performance of the Virtex-II
implementation would be significantly higher, but Stepping-
0 parts were used instead of the Stepping-1 parts2, which
would provide significantly higher performance embedded
multipliers. As with the adder, hand placement of the mul-
tiplier could probably reduce the slice utilization by as much
as 30%.

3.3 Division Implementation
The implementation of floating-point division is very sim-

ilar to that of floating-point multiplication. It must divide
the mantissas, round, and subtract the exponents. A full
precision divide is required, but the first N steps can be
skipped because the inputs are normalized. The remainder
is used to calculate the “sticky” bit. As with the multiplier,
compliance with the IEEE standard is complicated. De-
normal inputs must be normalized, but in this case if both
inputs are denormal, both must be normalized. Similarly,
NaN inputs must be preserved and non-denormal inputs can
create a denormal output that requires normalization.

As with the floating-point multiplier, the divide of the
mantissas is separated from the rest of the design to simplify
the substitution of better divide implementations. Only one
divide implementation (pipelined bit serial) was provided.
This is probably not the best divide option (in terms of
area); however, it is adequate to be competitive with a com-
modity CPU. Two parameters are available for the divider.
The first is a maximum latency that is used to allocate reg-

2Stepping-1 is a silicon revision of the Virtex-II parts that
provides a significant boost in the performance of the em-
bedded multipliers.

Table 5: IEEE double precision floating-point di-
vider characteristics.

Part 4-LUTs FFs Slices MHz

XC4085XLA-09 4910 9199 4821 23 (est.)
Virtex 1000-5 8061 9231 6856 50

Virtex-E 3200-7 8076 9323 6909 58
Virtex-II 6000-5 7981 9391 6858 83
Virtex-IIP 100-6 7976 9391 6880 98

Table 6: IEEE single precision floating-point divider
characteristics.

Part 4-LUTs FFs Slices MHz

XC4085XLA-09 1583 2380 1498 28
Virtex 1000-5 2207 2475 1925 60

Virtex-E 3200-7 2214 2473 1928 78
Virtex-II 6000-5 2200 2476 1929 100
Virtex-IIP 100-6 2199 2476 1927 120

isters in the design in the same way it is used in the mul-
tiplier and adder. The worst case latency is 67 cycles for
the double precision divider and 37 cycles for the single pre-
cision divider. The second parameter enables (or disables)
the support of denormals, which can provide a substantial
area savings at the cost of IEEE compliance.

Tables 5 and 6 list the performance and area requirements
of the double precision and single precision dividers. The
double precision divider did not fit on the XC4085XLA so
the performance was estimated using the ratio between dou-
ble and single precision multiply (a similar operation) on the
same device. Surprisingly, a single double precision floating-
point unit in an FPGA has throughput to match that of a
commodity CPU. The latency (in terms of clock cycles and
absolute time) is substantially worse in the FPGA, but the
advantage in throughput is substantial. As with the other
components, the slice utilization is substantially higher than
seems necessary.

3.4 Multiply Accumulate Implementation
Multiply accumulate is the fundamental composite oper-

ator for a number of operations including matrix multiply,
matrix vector multiply, and a number of matrix solution
methods including the popular LINPACK benchmark[18]
that qualifies supercomputers for the Top500 list[19]. As
such, multiply accumulate was chosen for comparison along
with the other basic operations. The implementation of mul-
tiply accumulate simply combines a multiplier and an adder
with some appropriate control logic. Because both the mul-
tiplier and adder are deeply pipelined, multiple concurrent
multiply accumulates must occur to maximize performance
(although correctness is maintained in either case). The
multiply accumulate operator accepts all of the parameters
available on the multiplier or adder as well as CONCURRENCY,
which controls the number of concurrent multiply accumu-
lates, and VLENGTH, which controls the number of results
from the multiplier that are accumulated into one result.

Tables 7 and 8 list the characteristics of the double and



Table 7: IEEE double precision floating-point mul-
tiply accumulate characteristics.

Part 4-LUTs FFs Slices MHz

XC4085XLA-09 5812 6512 3679 25 (est.)
Virtex 1000-5 6333 6512 5031 50

Virtex-E 3200-7 6333 6528 5034 63
Virtex-II 6000-5 3804 3818 2877 100
Virtex-IIP 100-6 3806 3818 2875 140

Table 8: IEEE single precision floating-point multi-
ply accumulate characteristics.

Part 4-LUTs FFs Slices MHz

XC4085XLA-09 2339 2363 1673 37
Virtex 1000-5 2125 2242 1699 78

Virtex-E 3200-7 2137 2242 1707 110
Virtex-II 6000-5 1617 1573 1206 127
Virtex-IIP 100-6 1612 1573 1203 175

single precision multiply accumulate operations, respectively.
Note that performance of the double precision multiply ac-
cumulate on the XC4085XLA must be estimated as it did
not fit in the device. The performance of the slower com-
ponent from the composite operation (the double precision
multiplier) was used for this estimate. Again, some vari-
ation in the 4-LUT, FF, and Slice counts is seen between
families with minor variations in the optimization done by
the synthesizer. In each case, the latency of the multiplier
and the adder in the multiply accumulate is the same as was
used in the stand alone tests.

4. PERFORMANCE PROJECTIONS
In this section, the peak floating-point performance of FP-

GAs is derived from the implementation data in Section 3.
Peak FPGA performance is calculated as the number of
functional units that can be instantiated times the clock
rate. In turn, the number of functional units that can be
instantiated is simply the number of slices (or CLBs in the
case of the XC4000 series) available divided by the number
of slices required for the functional unit. Although these are
first order approximations, this number is approximately as
realistic as peak performance numbers for a commodity mi-
croprocessor. Peak performance is presented for five FPGA
devices over six years and is compared with three commod-
ity microprocessors over the same time period.

Peak floating-point performance is extrapolated for both
the microprocessors and FPGAs. For the microprocessor,
performance is doubled every 18 months to represent the
well known corollary of Moore’s law. The trend line is forced
through the 2003 data point for microprocessors. Since no
such corollary has been established for FPGAs, the trend
line is derived by starting with the 1997 data point, selecting
a very conservative fit, and rounding the slope down.

Table 9 lists the parts chosen for the performance compar-
ison. The commodity microprocessor with the highest peak
performance was chosen for each of three years (regardless

Table 9: Parts used for performance comparison

Year FPGA CPU

1997 XC4085XLA-09 Pentium 266 MHz
1999 Virtex 1000-5
2000 Virtex-E 3200-7 Athlon 1.2 GHz
2001 Virtex-II 6000-5
2003 Virtex-II Pro 100-6 Pentium-4 3.2 GHz

of the release date during the year). Since microprocessor
performance trends are well known, only three data points
were deemed necessary. Similarly, five FPGAs were chosen
for data points over the course of the same 6 years. An effort
was made to choose the largest, fastest speed grade part with
reasonable availability during that year3. For 2001, a step-
ping 0 Virtex-II 6000-5 device was chosen. Device stepping
1 was released early the next year and significantly improved
the embedded multiplier performance. The part chosen for
1997 was chosen to be as representative as possible of the
devices that would have been available; however, there was
a constraint on which devices could be placed and routed
for these experiments. The oldest tools that were available
were Xilinx 4.2i, which do not support parts older than the
XC4000XLA series. The XC4085XL-2 might have been a
better choice, but the tools available would not target that
device.

Admittedly, there are limitations to this type of analysis;
however, the conservative assumptions that were made and
the dramatic performance improvements projected should
compensate for such limitations so that the “answer” is un-
changed. For example, the order of magnitude performance
advantage in 2009 may carry the same cost premium as cur-
rent large devices. However, cheaper members of the same
FPGA family will likely achieve a cost and performance ad-
vantage since FPGA performance is typically linear within
a family, but cost is almost exponential. A second limi-
tation is the lack of accounting for structures such as ad-
dress generation and integer computation units. Such units
are typically very simple in an FPGA. Furthermore, a hand
placed version of the floating-point functional units should
yield at least a 10% clock rate increase and a 25% reduction
in area. The space that is freed (including the removal of
10% of the functional units while maintaining performance)
should be more than adequate to support address genera-
tion structures. Finally, I/O between the CPU and FPGA
is not considered. The underlying assumption is that FP-
GAs (with embedded CPUs) will either replace the primary
CPU in a supercomputer or will be important enough to be
coupled into a supercomputing system in such a way as to
mitigate the I/O issues.

4.1 Addition
Figures 2 (a) and (b) indicate that FPGAs have signifi-

cantly higher floating-point addition performance than com-
modity CPUs. This is a surprising revelation since FPGAs
are generally considered to provide poor floating-point per-
formance at best. More surprising still is the fact that FP-
GAs have been ahead for almost four years. The trend line

3These selections were made based on input from Chuck
Cremer at Quatra Associates, Jason Moore at Xilinx, and
personal memory.



for floating-point addition on FPGAs projects a growth rate
of 4× every two years. This trend line is diverging from the
performance trend line for CPUs, which is only 2× every 18
months. Notably, double precision addition performance on
CPUs has been growing slower than the trend line for the
last 6 years, but the single precision addition performance
has been growing slightly faster than the trend line. This
is primarily attributable to a dramatic one time architec-
tural improvement that was achieved with the addition of
multimedia instructions.

FPGAs achieve this significant advantage over CPUs be-
cause their resources are configurable. If an application
requires a very addition rich mixture of instructions, the
FPGA can provide that. In contrast, commodity CPUs have
a fixed allocation of resources that can be successful for a
well mixed instruction stream, but has significant limitations
in code that is dominated by one instruction.

4.2 Multiplication
FPGAs have not dominated CPUs in floating-point multi-

plication performance for nearly as long they have in floating-
point addition performance. Figures 2(c) and (d) indicate
that FPGAs have only exceeded CPUs in multiplication per-
formance for three years in single precision arithmetic and
two years in double precision arithmetic. However, the trend
lines are diverging more rapidly with multiplication perfor-
mance growing at an average rate of 5× per year over the last
6 years. This is primarily because of the addition of 18× 18
fixed multipliers in recent parts. The use of these compo-
nents to implement the multiply of the mantissas (9 for dou-
ble precision, 4 for single precision) dramatically reduced the
area required. This trend is likely to continue since architec-
tural improvements (notably faster, wider, fixed multipliers)
are likely to continue.

The CPU performance in Figures 2 (c) and (d) has grown
slightly faster than the Moore’s law trend line over the last
6 years. For double precision, this is primarily because of a
change between 1997 and 2000 to allow multiplies to issue
every cycle. For single precision, it is primarily from the
addition of multimedia instructions that utilize SIMD par-
allelism. In both cases, similar improvements are not on the
processor roadmaps over the next few years.

4.3 Division
As seen in Figures 2 (e) and (f), FPGAs have long ex-

ceeded CPUs in floating-point division performance — with
one minor caveat. An XC4085XLA is not big enough (by a
significant margin) to implement a double precision divider.
Thus, the “performance” of a double precision divider on
that part is the fraction of the divider it can implement times
the estimated clock rate. This explains why the 4× trend
line overestimates the performance of the 2003 part: com-
ponents that can implement the operation are constrained
to integer multiples of divide units. The XC4085XLA had a
second artificial performance inflation because the mapper
packed the CLBs much tighter to try (in vain) to make it fit.
Thus, the area estimate is significantly smaller than it would
otherwise be. For the single precision divider, performance
of FPGAs has tracked a 4× trend line fairly well.

Commodity microprocessors are not well optimized for di-
vide operations. This is a significant issue for some scientific
applications[20]. Slow divides have first and second order
effects: the division instructions are slow (and unpipelined)

and these slow instructions clog the issue queue for modern
microprocessors. This makes divide rich applications a good
target for FPGA implementations.

4.4 Multiply Accumulate
Multiply accumulate is somewhat different from the other

operations considered in that it is a composite operation.
More importantly, it is a composite operation that is fun-
damental to a number of matrix operations (including LIN-
PACK). Unfortunately, Figure 3 indicates that FPGAs are
still somewhat slower than CPUs at performing this opera-
tion. FPGAs are, however, improving at a rate of 4.5× every
two years. This improvement rate (effectively a composite
of the performance improvements in addition and multipli-
cation) yields a significant win for FPGAs by the end of the
decade.

It would be easy to suggest that the comparison between
FPGA and CPU in this case is not “fair” because the FPGA
requires many concurrent multiply accumulates (in one mul-
tiply accumulate functional unit) to overcome the latency of
the adder and achieve the projected performance; however,
it should be noted that the Pentium-4 must alternate issu-
ing two adds and two multiplies4 with 4 cycle and 6 cycle
latency, respectively, to achieve its peak performance [21].
With the small register set in the IA-32 ISA, this is not
necessarily easier to exploit than the concurrency and par-
allelism available on the FPGA.

4.5 Analysis
A common theme among the performance graphs is the

flattening of the performance trend line from 2000 to 2003.
This is supported by the data in Figure 4, which clearly in-
dicates a flattening in the growth of area, increase in clock
rate, and feature size reduction. This appears to bode ill
for the projected performance trends; however, a closer look
at Figure 4 indicates differently. In Figure 4(a), the trend
in FPGA feature size broke sharply between 2001 and 2003,
but it is still on the same overall trend line for the 6 year pe-
riod as CPUs. Indeed, low cost FPGAs have already been
introduced on the 90 nm process — well ahead of CPUs.
High performance parts are expected to be introduced next
year concurrently with CPUs based on 90 nm technology.
Similarly, Figure 4(b) shows that the pace of FPGA density
improvements has dropped sharply from 2000 to 2003, but
overall density increases are still above the Moore’s law pro-
jection. Even if a much larger device (the XC40125EX) was
used as the 1997 baseline, the overall density improvement
would remain slightly above the Moore’s law projection.

Figure 4(c) seems to tell a slightly different story with
regards to clock rate. The “Moore’s law” trend line for
clock rate provides a reference that clearly indicates that
clock rate has not scaled as expected. However, this seeming
discrepancy is relatively easy to explain. This device used
as representative of 1997 technology for these experiments
was the XC4085XLA-09. A more accurate part would have
been the XC4085XL-2, but the Xilinx 4.2i tools that were
available for these experiments would not process such a
device. A XC4085XL-2 part is approximately 40% slower
than the XC4085XLA-09 part used. Combining this with
the significant performance increase that Virtex-II Pro parts

4The throughput of the SSE2 multiplier is one instruction
per 2 cycles. Each instruction can do two multiplies.
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Figure 2: Floating-point addition performance for: (a) double precision, and (b) single precision. Floating-
point multiplication performance trend for: (c) double precision, and (d) single precision. Floating-point
division performance trend for: (e) double precision, and (f) single precision.
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Figure 3: Floating-point multiply accumulate performance trend for: (a) double precision, and (b) single
precision.

should receive as the tool chain develops trends in clock rates
that meet the expectations of Moore’s law.

Improvement in addition and division performance are de-
rived strictly from technology improvement; however, the
5× every two years performance growth of multipliers will
be difficult to maintain indefinitely. Fortunately, only mi-
nor improvements are needed each generation to realize this
gain. This should be readily achievable through 2009 (wider
embedded multipliers, enhanced support for shifting, etc.).

5. CONCLUSIONS
This paper has presented designs for single and double

precision IEEE compliant floating-point addition, multipli-
cation, and division. For each of these operations, an FPGA
has a higher peak floating-point performance than a CPU.
This occurs because FPGAs are able to customize the al-
location of resources to meet the needs of the application
while CPUs have fixed functional units. CPUs currently
have higher peak performance than FPGAs for applications
that fully utilize the CPU’s fixed resources. An excellent
example of this is the multiply accumulate primitive which
is the core of matrix multiplication and matrix vector mul-
tiplication. Preliminary work[22], however, indicates that
real applications can have instruction mixes that are highly
biased toward a single type of operation.

The more important result is the illustration of the trends
in floating-point performance for both FPGAs and CPUs.
While CPUs are following a well known corollary of Moore’s
law (doubling in performance every 18 months), FPGA per-
formance is increasing by 4× every two years. For oper-
ations that use the architectural improvements in FPGAs,
performance is increasing at a rate of 5× every two years.
Projecting these trends forward yields an order of magni-
tude advantage in peak performance for FPGAs by 2009.
This has important implications for the design of supercom-
puters in that era since FPGAs should sustain as high, and
potentially higher, percentage of peak than CPUs.

6. FUTURE WORK
Peak performance is the metric most commonly used when

announcing the latest supercomputer acquisition. If for no
other reason, this makes it an important metric to study;
however, in the end, sustained performance is a better met-
ric for how quickly a system can perform work. As an exam-
ple, the Top500 list[19] uses LINPACK[18] performance as
a metric. Unfortunately, for many applications, LINPACK
performance is closer to peak performance than sustained
performance on real applications. Future work will focus on
floating-point computational cores that are representative of
the workload at Sandia. These cores will be implemented to
compare the sustained performance of FPGAs and CPUs.
Furthermore, a portion of these studies will focus on how
an FPGA might be integrated in future supercomputers to
leverage these performance advantages.
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